skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cheville, Alan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This research-to-practice paper describes an experiment designed to understand educational opportunities valued by students. Engineering education has, since the advent of ABET's EC-2000, operated using an outcomes-based paradigm predominantly focused on preparing engineers for the workforce. Engineering departments create curricula based on this paradigm that are more rigid than most other disciplines, thereby limiting the opportunities students have to explore beyond established curricular boundaries. The outcome-based paradigm limits students' agency in engineering education to pursue growth in unique, individual ways. Recognizing these challenges, the Electrical and Computer Engineering Department at Bucknell University is adapting Amartya Sen's Capability Approach, which emphasizes student agency. In contrast to top-down approaches to curriculum design that focus narrowly on students' mastery of defined content areas, we focus on enabling students to develop the abilities needed to live a life aligned with their values. Rather than ensuring students achieve mandated outcomes, the focus is on providing opportunities, which students actively choose to transform into achievements. This study sought to better understand the opportunities that students value. The department first created a capabilities list that classified several opportunities that are of potential importance in engineering education. To gather feedback from students in the department, we offered two focus groups to discuss our capabilities list and a follow-up survey to formally elicit student valuation of capabilities. In addition, we offered an experimental course that promoted an opportunity-based engineering education model that nurtures both academic and personal growth. Student reflections from this class were analyzed using inductive coding with multiple coders, categorizing portions of students' reflections that align with our capabilities list. This study reveals the opportunities students highly regard to be better equipped to live a life they value. 
    more » « less
  2. This research-to-practice full paper presents and approach to bringing convergence to the undergraduate engineering context. Convergence is the process of integrating a variety of ideas, skills, and methods to create new ideas, skills, and methods in order to address complex, socially relevant challenges like the UN Sustainable Development Goals [1] and the National Academy of Engineering's (NAE) Grand Challenges [2]. In the US, the National Science Foundation (NSF) has been a major driver of convergence related research and has focused on work primarily at the graduate level and beyond. To explore how convergence concepts translate to an undergraduate engineering context this research to practice paper describes a taxonomy that translates convergent knowledge, skills, and mindsets into the domain of undergraduate engineering education. While we do not believe it is reasonable to expect undergraduates to engage with convergence in the same way as graduate students or postdoctoral scholars, we believe that they can develop in areas that will allow them to engage in convergent work later in their careers. This paper first defines convergence and then examines the challenges and opportunities related to developing a student's ability to do convergent work in an undergraduate context. The developed taxonomy outlines the knowledge, skills, mindsets, and structures that support convergent work from the larger research literature, and adapts these to an undergraduate context. The taxonomy is then used to conduct a gap analysis of an undergraduate electrical and computer engineering degree program. This analysis is based on the syllabi. This work was conducted in the context of an electrical and computer engineering department situated in a medium-sized primarily undergraduate liberal arts institution in the mid-Atlantic region. As the challenges and opportunities are similar to but also unique to this institution this work forms a rich case study that can inform similar efforts in other institutions and contexts where a similar gap analysis may be beneficial. The goal of this work is to enable others to analyze an their existing student experience to see what aspects of convergence are currently included. 
    more » « less
  3. Abstract—Wicked problems, the National Academy of Engineering’s Grand Challenges, the United Nations’ Sustainability Goals, and similar complex, global-scale endeavors fall under the broad umbrella of “convergent” work. Over the past two decades there has been an increase in interest and funding for work in this space. The NSF has two programs focused in this area, Growing Convergence Research and the Convergence Accelerator. Boston University’s College of Engineering recently announced a focus on convergent projects and work. The National Academic of Engineering also has the Grand Challenge Scholars program with over 100 participating schools. The list continues to grow. The broad concept of convergence seems to be quite simple: combine the ideas, skills, and/or methods of multiple disciplines to create something new. More specific definitions vary and while the interest in convergence and convergent problems continues to increase, there is no easily operational definition of convergence. This is especially true with respect to undergraduate-level education where students have limited experience and knowledge to carry out such efforts. To better understand the variation that exists within the literature on convergence we conducted a systematic review to explore how convergence is defined in scholarly literature. We have identified a small number of categories within the definition space and conducted a thematic analysis of the aspects of each. The results show that there is a fairly consistent focus on the work being socially-relevant and on creating something new such as an idea, method, product, or process to address desired needs. Additionally, doing convergent work requires the integration of aspects of multiple disciplines and is conducted by diverse teams. Lastly, the disciplinary backgrounds of those teams almost always includes the natural and biological sciences with a subset the following disciplines: information or computing sciences, engineering, social sciences, and humanities. While there is some consistency in the definition, there also seems to be space for some variation which leaves for some level of choice in the definition. 
    more » « less
  4. Education literature has long emphasized the compounding benefits of reflective practice. Although reflection has largely been used as a tool for developing writing skills, contemporary research has explored its contributions to other disciplines including professional occupations such as nursing, teaching and engineering. Reflective assignments encourage engineering students to think critically about the impact engineers can and should have in the global community and their future role in engineering. The Department of Electrical and Computer Engineering at a small liberal arts college adopted ePortfolios in a first-year design course to encourage students to reframe their experiences and cultivate their identities as engineers. Our recent work demonstrated that students who create ePortfolios cultivate habits of reflective thinking that continue in subsequent courses within our program’s design sequence. However, student ability to transfer reflective habits across domains has remained unclear and encouraging critical engagement beyond the focused scope of technical content within more traditional core engineering courses is often difficult. In this work, we analyze students’ ability to transfer habits of reflective thinking across domains from courses within a designfocused course sequence to technical content-focused courses within a degree program. Extending reflection into core courses in a curriculum is important for several reasons. First, it stimulates metacognition which enables students to transfer content to future courses. Second, it builds students’ ability to think critically about technical subject matter. And third, it contributes to the ongoing development of their identities as engineers. Particularly for students traditionally underrepresented in engineering, the ability to integrate prior experiences and interests into one’s evolving engineering identity may lead to better retention and sense of belonging in the profession. In the first-year design course, electrical and computer engineering students (N=28) at a liberal arts university completed an ePortfolio assignment to explore the discipline. Using a combination of inductive and deductive coding techniques, multiple members of our team coded student reports and checked for intercoder reliability. Previously, we found that students’ reflection dramatically improved in the second-year design course [1]. Drawing upon Hatton and Smith’s (1995) categorizations of reflective thinking [2], we observed that students were particularly proficient in Dialogic Reflection, or reflection that relates to their own histories, interests, and experiences. In this paper, we compare the quality of student reflections in the second-year design course with those in a second-year required technical course to discover if reflective capabilities have transferred into a technical domain. We discovered that students are able to transfer reflective thinking across different types of courses, including those emphasizing technical content, after a single ePortfolio activity. Furthermore, we identified a similar pattern of improvement most notably in Dialogic Reflection. This finding indicates that students are developing sustained habits of reflective thinking. As a result, we anticipate an increase in their ability to retain core engineering concepts throughout the curriculum. Our future plans are to expand ePortfolio usage to all design courses as well as some 
    more » « less
  5. null (Ed.)
    In June 2020, at the annual conference of the American Society for Engineering Education (ASEE), which was held entirely online due to the impacts of COVID-19 (SARS-CoV-2), engineering education researchers and social justice scholars diagnosed the spread of two diseases in the United States: COVID-19 and racism. During a virtual workshop (T614A) titled, “Using Power, Privilege, and Intersectionality as Lenses to Understand our Experiences and Begin to Disrupt and Dismantle Oppressive Structures Within Academia,” Drs. Nadia Kellam, Vanessa Svihla, Donna Riley, Alice Pawley, Kelly Cross, Susannah Davis, and Jay Pembridge presented what we might call a pathological analysis of institutionalized racism and various other “isms.” In order to address the intersecting impacts of this double pandemic, they prescribed counter practices and protocols of anti-racism, and strategies against other oppressive “isms” in academia. At the beginning of the virtual workshop, the presenters were pleasantly surprised to see that they had around a hundred attendees. Did the online format of the ASEE conference afford broader exposure of the workshop? Did recent uprising of Black Lives Matter (BLM) protests across the country, and internationally, generate broader interest in their topic? Whatever the case, at a time when an in-person conference could not be convened without compromising public health safety, ASEE’s virtual conference platform, furnished by Pathable and supplemented by Zoom, made possible the broader social impacts of Dr. Svihla’s land acknowledgement of the unceded Indigenous lands from which she was presenting. Svihla attempted to go beyond a hollow gesture by including a hyperlink in her slides to a COVID-19 relief fund for the Navajo Nation, and encouraged attendees to make a donation as they copied and pasted the link in the Zoom Chat. Dr. Cross’s statement that you are either a racist or an anti-racist at this point also promised broader social impacts in the context of the virtual workshop. You could feel the intensity of the BLM social movements and the broader political climate in the tone of the presenters’ voices. The mobilizing masses on the streets resonated with a cutting-edge of social justice research and education at the ASEE virtual conference. COVID-19 has both exacerbated and made more obvious the unevenness and inequities in our educational practices, processes, and infrastructures. This paper is an extension of a broader collaborative research project that accounts for how an exceptional group of engineering educators have taken this opportunity to socially broaden their curricula to include not just public health matters, but also contemporary political and social movements. Engineering educators for change and advocates for social justice quickly recognized the affordances of diverse forms of digital technologies, and the possibilities of broadening their impact through educational practices and infrastructures of inclusion, openness, and accessibility. They are makers of what Gary Downy calls “scalable scholarship”—projects in support of marginalized epistemologies that can be scaled up from ideation to practice in ways that unsettle and displace the dominant epistemological paradigm of engineering education.[1] This paper is a work in progress. It marks the beginning of a much lengthier project that documents the key positionality of engineering educators for change, and how they are socially situated in places where they can connect social movements with industrial transitions, and participate in the production of “undone sciences” that address “a structured absence that emerges from relations of inequality.”[2] In this paper, we offer a brief glimpse into ethnographic data we collected virtually through interviews, participant observation, and digital archiving from March 2019 to August 2019, during the initial impacts of COVID-19 in the United States. The collaborative research that undergirds this paper is ongoing, and what is presented here is a rough and early articulation of ideas and research findings that have begun to emerge through our engagement with engineering educators for change. This paper begins by introducing an image concept that will guide our analysis of how, in this historical moment, forms of social and racial justice are finding their way into the practices of engineering educators through slight changes in pedagogical techniques in response the debilitating impacts of the pandemic. Conceptually, we are interested in how small and subtle changes in learning conditions can socially broaden the impact of engineering educators for change. After introducing the image concept that guides this work, we will briefly discuss methodology and offer background information about the project. Next, we discuss literature that revolves around the question, what is engineering education for? Finally, we introduce the notion of situating engineering education and give readers a brief glimpse into our ethnographic data. The conclusion will indicate future directions for writing, research, and intervention. 
    more » « less
  6. In this paper or poster presentation, we hope to present to and interact with our audience with respect to a key touchpoint in our national study of engineering education reform. Based on an NSF collaborative grant, our project team has conducted approximately 280 semi-structured interviews at over 40 different institutions with regards to change processes that operate within engineering education. Originally inspired by our earlier work on ABET, we framed our study around questions of governance, namely how national organizations and national conversations do and don’t shape changes in engineering education. However, our early interviews made it very clear that US engineering schools viewed themselves as participating in a competitive market, where local initiatives and innovations are as important if not more important to their student experience and institutional reputation. This said, market mechanisms and the way in which local innovations circulate (entrepreneurship, maker spaces, humanitarian engineering) are themselves a form of coordination, pointing to more subtle modes of governance that operate within engineering education. Drawing on the multi-theory framework of Austin and Jones’ for understanding Higher Education Governance (2015), we use this presentation to begin to tease apart the different modes through which change occurs within engineering education. 
    more » « less
  7. This paper reflects on the significance of ABET’s “maverick evaluators” and what it says about the limits of accreditation as a mode of governance in US engineering education. The US system of engineering education operates as a highly complex system, where the diversity of the system is an asset to robust knowledge production and the production of a varied workforce. ABET Inc., the principal accreditation agency for engineering degree programs in the US, attempts to uphold a set of professional standards for engineering education using a voluntary, peer-based system of evaluation. Key to their approach is a volunteer army of trained program evaluators (PEVs) assigned by the engineering professional societies, who serve as the frontline workers responsible for auditing the content, learning outcomes, and continuous improvement processes utilized by every engineering degree program accredited by ABET. We take a look specifically at those who become labeled “maverick evaluators” in order to better understand how this system functions, and to understand its limitations as a form of governance in maintaining educational quality and appropriate professional standards within engineering education. ABET was established in 1932 as the Engineers’ Council for Professional Development (ECPD). The Cold War consensus around the engineering sciences led to a more quantitative system of accreditation first implemented in 1956. However, the decline of the Cold War and rising concerns about national competitiveness prompted ABET to shift to a more neoliberal model of accountability built around outcomes assessment and modeled after total quality management / continuous process improvement (TQM/CPI) processes that nominally gave PEVs greater discretion in evaluating engineering degree programs. However, conflicts over how the PEVs exercised judgment points to conservative aspects in the structure of the ABET organization, and within the engineering profession at large. This paper and the phenomena we describe here is one part of a broader, interview-based study of higher education governance and engineering educational reform within the United States. We have conducted over 300 interviews at more than 40 different academic institutions and professional organizations, where ABET and institutional responses to the reforms associated with “EC 2000,” which brought outcomes assessment to engineering education, are extensively discussed. The phenomenon of so-called “maverick evaluators” reveal the divergent professional interests that remain embedded within ABET and the engineering profession at large. Those associated with Civil and Environmental Engineering, and to a lesser extent Mechanical Engineering continue to push for higher standards of accreditation grounded in a stronger vision for their professions. While the phenomenon is complex and more subtle than we can summarize in an abstract, “maverick evaluators” emerged as a label for PEVs who interpreted their role, including determinations about whether certain content “appropriate to the field of study,” utilizing professional standards that lay outside of the consensus position held by the majority of the member of the Engineering Accreditation Commission. This, conjoined with the engineers’ epistemic aversion to uncertainty and concerns about the legal liability of their decisions, resulted in a more narrow interpretation of key accreditation criteria. The organization then designed and used a “due-process” reviews process to discipline identified shortcomings in order to limit divergent interpretations. The net result is that the bureaucratic process ABET built to obtain uniformity in accreditation outcomes, simultaneously blunts the organization’s capacity to support varied interpretations of professional standards at the program level. The apparatus has also contributed to ABET’s reputation as an organization focused on minimum standards, as opposed to one that functions as an effective driver for further change in engineering education. 
    more » « less